
Pacemaker Administration
Release 2.1.7

the Pacemaker project contributors

Dec 19, 2023





CONTENTS

1 Abstract 3

2 Table of Contents 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Scope of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 What Is Pacemaker? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Installing Cluster Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Cluster Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Configuring Pacemaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Configuration Using Higher-level Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Configuration Using Pacemaker’s Command-Line Tools . . . . . . . . . . . . . . . . . 13
2.4.3 Connecting from a Remote Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Using Pacemaker Command-Line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Controlling Command Line Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Monitor a Cluster with crm_mon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.3 Edit the CIB XML with cibadmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Batch Configuration Changes with crm_shadow . . . . . . . . . . . . . . . . . . . . . 19
2.5.5 Simulate Cluster Activity with crm_simulate . . . . . . . . . . . . . . . . . . . . . . 20
2.5.6 Manage Node Attributes, Cluster Options and Defaults with crm_attribute and at-

trd_updater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.7 Other Commonly Used Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Administrative Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.1 Maintenance Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Unmanaged Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.3 Disabled Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.4 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.5 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Moving Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.1 Moving Resources Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.2 Moving Resources Due to Connectivity Changes . . . . . . . . . . . . . . . . . . . . . 28

2.8 Troubleshooting Cluster Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.1 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.2 Reading the Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.3 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.4 Node Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.5 Resource Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Upgrading a Pacemaker Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9.1 Pacemaker Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9.2 Upgrading Cluster Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9.3 Upgrading the Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

i



2.9.4 What Changed in 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9.5 What Changed in 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9.6 What Changed in 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10 Alert Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10.1 Using the Sample Alert Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.10.2 Writing an Alert Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.11 Resource Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11.1 Action Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11.2 OCF Resource Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.11.3 LSB Resource Agents (Init Scripts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Quick Comparison of pcs and crm shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.12.1 Show Cluster Configuration and Status . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.12.2 Manage Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.12.3 Manage Cluster Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12.4 Show Resource Agent Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12.5 Manage Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.12.6 Manage Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.12.7 Advanced Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Index 55

Index 57

ii



Pacemaker Administration, Release 2.1.7

Managing Pacemaker Clusters

CONTENTS 1



Pacemaker Administration, Release 2.1.7

2 CONTENTS



CHAPTER

ONE

ABSTRACT

This document has instructions and tips for system administrators who manage high-availability clusters
using Pacemaker.

3



Pacemaker Administration, Release 2.1.7

4 Chapter 1. Abstract



CHAPTER

TWO

TABLE OF CONTENTS

2.1 Introduction

2.1.1 The Scope of this Document

The purpose of this document is to help system administrators learn how to manage a Pacemaker cluster.

System administrators may be interested in other parts of the Pacemaker documentation set such as Clusters
from Scratch, a step-by-step guide to setting up an example cluster, and Pacemaker Explained, an exhaustive
reference for cluster configuration.

Multiple higher-level tools (both command-line and GUI) are available to simplify cluster management.
However, this document focuses on the lower-level command-line tools that come with Pacemaker itself.
The concepts are applicable to the higher-level tools, though the syntax would differ.

2.1.2 What Is Pacemaker?

Pacemaker is a high-availability cluster resource manager – software that runs on a set of hosts (a cluster of
nodes) in order to preserve integrity and minimize downtime of desired services (resources).1 It is maintained
by the ClusterLabs community.

Pacemaker’s key features include:

• Detection of and recovery from node- and service-level failures

• Ability to ensure data integrity by fencing faulty nodes

• Support for one or more nodes per cluster

• Support for multiple resource interface standards (anything that can be scripted can be clustered)

• Support (but no requirement) for shared storage

• Support for practically any redundancy configuration (active/passive, N+1, etc.)

• Automatically replicated configuration that can be updated from any node

• Ability to specify cluster-wide relationships between services, such as ordering, colocation, and anti-
colocation

• Support for advanced service types, such as clones (services that need to be active on multiple nodes),
promotable clones (clones that can run in one of two roles), and containerized services

• Unified, scriptable cluster management tools
1 Cluster is sometimes used in other contexts to refer to hosts grouped together for other purposes, such as high-performance

computing (HPC), but Pacemaker is not intended for those purposes.

5

https://www.clusterlabs.org/pacemaker/doc/
https://www.ClusterLabs.org/


Pacemaker Administration, Release 2.1.7

Note: Fencing

Fencing, also known as STONITH (an acronym for Shoot The Other Node In The Head), is the ability to
ensure that it is not possible for a node to be running a service. This is accomplished via fence devices
such as intelligent power switches that cut power to the target, or intelligent network switches that cut the
target’s access to the local network.

Pacemaker represents fence devices as a special class of resource.

A cluster cannot safely recover from certain failure conditions, such as an unresponsive node, without fencing.

Cluster Architecture

At a high level, a cluster can be viewed as having these parts (which together are often referred to as the
cluster stack):

• Resources: These are the reason for the cluster’s being – the services that need to be kept highly
available.

• Resource agents: These are scripts or operating system components that start, stop, and monitor
resources, given a set of resource parameters. These provide a uniform interface between Pacemaker
and the managed services.

• Fence agents: These are scripts that execute node fencing actions, given a target and fence device
parameters.

• Cluster membership layer: This component provides reliable messaging, membership, and quorum
information about the cluster. Currently, Pacemaker supports Corosync as this layer.

• Cluster resource manager: Pacemaker provides the brain that processes and reacts to events that
occur in the cluster. These events may include nodes joining or leaving the cluster; resource events
caused by failures, maintenance, or scheduled activities; and other administrative actions. To achieve
the desired availability, Pacemaker may start and stop resources and fence nodes.

• Cluster tools: These provide an interface for users to interact with the cluster. Various command-line
and graphical (GUI) interfaces are available.

Most managed services are not, themselves, cluster-aware. However, many popular open-source cluster
filesystems make use of a common Distributed Lock Manager (DLM), which makes direct use of Corosync
for its messaging and membership capabilities and Pacemaker for the ability to fence nodes.

6 Chapter 2. Table of Contents

http://www.corosync.org/


Pacemaker Administration, Release 2.1.7

Pacemaker Architecture

Pacemaker itself is composed of multiple daemons that work together:

• pacemakerd

• pacemaker-attrd

• pacemaker-based

• pacemaker-controld

• pacemaker-execd

• pacemaker-fenced

• pacemaker-schedulerd

2.1. Introduction 7



Pacemaker Administration, Release 2.1.7

Pacemaker’s main process (pacemakerd) spawns all the other daemons, and respawns them if they unex-
pectedly exit.

The Cluster Information Base (CIB) is an XML representation of the cluster’s configuration and the state
of all nodes and resources. The CIB manager (pacemaker-based) keeps the CIB synchronized across the
cluster, and handles requests to modify it.

The attribute manager (pacemaker-attrd) maintains a database of attributes for all nodes, keeps it syn-
chronized across the cluster, and handles requests to modify them. These attributes are usually recorded in
the CIB.

Given a snapshot of the CIB as input, the scheduler (pacemaker-schedulerd) determines what actions are
necessary to achieve the desired state of the cluster.

The local executor (pacemaker-execd) handles requests to execute resource agents on the local cluster node,
and returns the result.

The fencer (pacemaker-fenced) handles requests to fence nodes. Given a target node, the fencer decides
which cluster node(s) should execute which fencing device(s), and calls the necessary fencing agents (either
directly, or via requests to the fencer peers on other nodes), and returns the result.

The controller (pacemaker-controld) is Pacemaker’s coordinator, maintaining a consistent view of the
cluster membership and orchestrating all the other components.

Pacemaker centralizes cluster decision-making by electing one of the controller instances as the Designated
Controller (DC). Should the elected DC process (or the node it is on) fail, a new one is quickly established.
The DC responds to cluster events by taking a current snapshot of the CIB, feeding it to the scheduler, then

8 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/XML


Pacemaker Administration, Release 2.1.7

asking the executors (either directly on the local node, or via requests to controller peers on other nodes)
and the fencer to execute any necessary actions.

Note: Old daemon names

The Pacemaker daemons were renamed in version 2.0. You may still find references to the old names,
especially in documentation targeted to version 1.1.

Old name New name
attrd pacemaker-attrd
cib pacemaker-based
crmd pacemaker-controld
lrmd pacemaker-execd
stonithd pacemaker-fenced
pacemaker_remoted pacemaker-remoted

Node Redundancy Designs

Pacemaker supports practically any node redundancy configuration including Active/Active, Active/Passive,
N+1, N+M, N-to-1, and N-to-N.

Active/passive clusters with two (or more) nodes using Pacemaker and DRBD are a cost-effective high-
availability solution for many situations. One of the nodes provides the desired services, and if it fails, the
other node takes over.

2.1. Introduction 9

https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
https://en.wikipedia.org/wiki/Distributed_Replicated_Block_Device


Pacemaker Administration, Release 2.1.7

Pacemaker also supports multiple nodes in a shared-failover design, reducing hardware costs by allowing
several active/passive clusters to be combined and share a common backup node.

10 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

When shared storage is available, every node can potentially be used for failover. Pacemaker can even run
multiple copies of services to spread out the workload. This is sometimes called N-to-N redundancy.

2.1. Introduction 11



Pacemaker Administration, Release 2.1.7

2.2 Installing Cluster Software

Most major Linux distributions have pacemaker packages in their standard package repositories, or the
software can be built from source code. See the Install wiki page for details.

2.3 The Cluster Layer

Pacemaker utilizes an underlying cluster layer for two purposes:

• obtaining quorum

• messaging between nodes

Currently, only Corosync 2 and later is supported for this layer.

This document assumes you have configured the cluster nodes in Corosync already. High-level cluster
management tools are available that can configure Corosync for you. If you want the lower-level details, see
the Corosync documentation.

12 Chapter 2. Table of Contents

https://wiki.clusterlabs.org/wiki/Install
https://corosync.github.io/corosync/


Pacemaker Administration, Release 2.1.7

2.4 Configuring Pacemaker

Pacemaker’s configuration, the CIB, is stored in XML format. Cluster administrators have multiple op-
tions for modifying the configuration either via the XML, or at a more abstract (and easier for humans to
understand) level.

Pacemaker reacts to configuration changes as soon as they are saved. Pacemaker’s command-line tools and
most higher-level tools provide the ability to batch changes together and commit them at once, rather than
make a series of small changes, which could cause avoid unnecessary actions as Pacemaker responds to each
change individually.

Pacemaker tracks revisions to the configuration and will reject any update older than the current revision.
Thus, it is a good idea to serialize all changes to the configuration. Avoid attempting simultaneous changes,
whether on the same node or different nodes, and whether manually or using some automated configuration
tool.

Note: It is not necessary to update the configuration on all cluster nodes. Pacemaker immediately
synchronizes changes to all active members of the cluster. To reduce bandwidth, the cluster only broadcasts
the incremental updates that result from your changes and uses checksums to ensure that each copy is
consistent.

2.4.1 Configuration Using Higher-level Tools

Most users will benefit from using higher-level tools provided by projects separate from Pacemaker. Some
of the most commonly used include the crm shell, hawk, and pcs.1

See those projects’ documentation for details on how to configure Pacemaker using them.

2.4.2 Configuration Using Pacemaker’s Command-Line Tools

Pacemaker provides lower-level, command-line tools to manage the cluster. Most configuration tasks can be
performed with these tools, without needing any XML knowledge.

To enable STONITH for example, one could run:

# crm_attribute --name stonith-enabled --update 1

Or, to check whether node1 is allowed to run resources, there is:

# crm_standby --query --node node1

Or, to change the failure threshold of my-test-rsc, one can use:

# crm_resource -r my-test-rsc --set-parameter migration-threshold --parameter-value 3 --meta

Examples of using these tools for specific cases will be given throughout this document where appropriate.
See the man pages for further details.

See Edit the CIB XML with cibadmin for how to edit the CIB using XML.

See Batch Configuration Changes with crm_shadow for a way to make a series of changes, then commit them
all at once to the live cluster.

1 For a list, see “Configuration Tools” at https://clusterlabs.org/components.html

2.4. Configuring Pacemaker 13

https://clusterlabs.org/components.html


Pacemaker Administration, Release 2.1.7

Working with CIB Properties

Although these fields can be written to by the user, in most cases the cluster will overwrite any values
specified by the user with the “correct” ones.

To change the ones that can be specified by the user, for example admin_epoch, one should use:

# cibadmin --modify --xml-text '<cib admin_epoch="42"/>'

A complete set of CIB properties will look something like this:

XML attributes set for a cib element

<cib crm_feature_set="3.0.7" validate-with="pacemaker-1.2"
admin_epoch="42" epoch="116" num_updates="1"
cib-last-written="Mon Jan 12 15:46:39 2015" update-origin="rhel7-1"
update-client="crm_attribute" have-quorum="1" dc-uuid="1">

Querying and Setting Cluster Options

Cluster options can be queried and modified using the crm_attribute tool. To get the current value of
cluster-delay, you can run:

# crm_attribute --query --name cluster-delay

which is more simply written as

# crm_attribute -G -n cluster-delay

If a value is found, you’ll see a result like this:

# crm_attribute -G -n cluster-delay
scope=crm_config name=cluster-delay value=60s

If no value is found, the tool will display an error:

# crm_attribute -G -n clusta-deway
scope=crm_config name=clusta-deway value=(null)
Error performing operation: No such device or address

To use a different value (for example, 30 seconds), simply run:

# crm_attribute --name cluster-delay --update 30s

To go back to the cluster’s default value, you can delete the value, for example:

# crm_attribute --name cluster-delay --delete
Deleted crm_config option: id=cib-bootstrap-options-cluster-delay name=cluster-delay

When Options are Listed More Than Once

If you ever see something like the following, it means that the option you’re modifying is present more than
once.

14 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Deleting an option that is listed twice

# crm_attribute --name batch-limit --delete

Please choose from one of the matches below and supply the 'id' with --id
Multiple attributes match name=batch-limit in crm_config:
Value: 50 (set=cib-bootstrap-options, id=cib-bootstrap-options-batch-limit)
Value: 100 (set=custom, id=custom-batch-limit)

In such cases, follow the on-screen instructions to perform the requested action. To determine which value
is currently being used by the cluster, refer to the “Rules” chapter of Pacemaker Explained.

2.4.3 Connecting from a Remote Machine

Provided Pacemaker is installed on a machine, it is possible to connect to the cluster even if the machine
itself is not in the same cluster. To do this, one simply sets up a number of environment variables and runs
the same commands as when working on a cluster node.

Table 1: Environment Variables Used to Connect to Re-
mote Instances of the CIB

Environment Variable Default Description
CIB_user hacluster The user to connect as. Needs to be part of the haclient

group on the target host.
CIB_passwd The user’s password. Read from the command line if

unset.
CIB_server localhost The host to contact
CIB_port The port on which to contact the server; required
CIB_encrypted true Whether to encrypt network traffic

So, if c001n01 is an active cluster node and is listening on port 1234 for connections, and someuser is a
member of the haclient group, then the following would prompt for someuser’s password and return the
cluster’s current configuration:

# export CIB_port=1234; export CIB_server=c001n01; export CIB_user=someuser;
# cibadmin -Q

For security reasons, the cluster does not listen for remote connections by default. If you wish to allow
remote access, you need to set the remote-tls-port (encrypted) or remote-clear-port (unencrypted)
CIB properties (i.e., those kept in the cib tag, like num_updates and epoch). Encrypted communication is
keyless, which makes it subject to man-in-the-middle attacks, and thus either option should be used only on
protected networks.

Important: The Pacemaker version on the administration host must be the same or greater than the
version(s) on the cluster nodes. Otherwise, it may not have the schema files necessary to validate the CIB.

2.4. Configuring Pacemaker 15



Pacemaker Administration, Release 2.1.7

2.5 Using Pacemaker Command-Line Tools

2.5.1 Controlling Command Line Output

Some of the pacemaker command line utilities have been converted to a new output system. Among these
tools are crm_mon and stonith_admin. This is an ongoing project, and more tools will be converted over
time. This system lets you control the formatting of output with --output-as= and the destination of
output with --output-to=.

The available formats vary by tool, but at least plain text and XML are supported by all tools that use the
new system. The default format is plain text. The default destination is stdout but can be redirected to any
file. Some formats support command line options for changing the style of the output. For instance:

# crm_mon --help-output
Usage:

crm_mon [OPTION?]

Provides a summary of cluster's current state.

Outputs varying levels of detail in a number of different formats.

Output Options:
--output-as=FORMAT Specify output format as one of: console (default), html, text,

↪→ xml
--output-to=DEST Specify file name for output (or "-" for stdout)
--html-cgi Add text needed to use output in a CGI program
--html-stylesheet=URI Link to an external CSS stylesheet
--html-title=TITLE Page title
--text-fancy Use more highly formatted output

2.5.2 Monitor a Cluster with crm_mon

The crm_mon utility displays the current state of an active cluster. It can show the cluster status organized
by node or by resource, and can be used in either single-shot or dynamically updating mode. It can also
display operations performed and information about failures.

Using this tool, you can examine the state of the cluster for irregularities, and see how it responds when you
cause or simulate failures.

See the manual page or the output of crm_mon --help for a full description of its many options.

Sample output from crm_mon -1

Cluster Summary:
* Stack: corosync
* Current DC: node2 (version 2.0.0-1) - partition with quorum
* Last updated: Mon Jan 29 12:18:42 2018
* Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
* 5 nodes configured
* 2 resources configured

Node List:
* Online: [ node1 node2 node3 node4 node5 ]

* Active resources:
* Fencing (stonith:fence_xvm): Started node1
* IP (ocf:heartbeat:IPaddr2): Started node2

16 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Sample output from crm_mon -n -1

Cluster Summary:
* Stack: corosync
* Current DC: node2 (version 2.0.0-1) - partition with quorum
* Last updated: Mon Jan 29 12:21:48 2018
* Last change: Mon Jan 29 12:18:40 2018 by root via crm_attribute on node3
* 5 nodes configured
* 2 resources configured

* Node List:
* Node node1: online
* Fencing (stonith:fence_xvm): Started

* Node node2: online
* IP (ocf:heartbeat:IPaddr2): Started

* Node node3: online
* Node node4: online
* Node node5: online

As mentioned in an earlier chapter, the DC is the node is where decisions are made. The cluster elects a
node to be DC as needed. The only significance of the choice of DC to an administrator is the fact that its
logs will have the most information about why decisions were made.

Styling crm_mon HTML output

Various parts of crm_mon’s HTML output have a CSS class associated with them. Not everything does, but
some of the most interesting portions do. In the following example, the status of each node has an online
class and the details of each resource have an rsc-ok class.

<h2>Node List</h2>
<ul>
<li>
<span>Node: cluster01</span><span class="online"> online</span>
</li>
<li><ul><li><span class="rsc-ok">ping (ocf::pacemaker:ping): Started</span></li></ul></li>
<li>
<span>Node: cluster02</span><span class="online"> online</span>
</li>
<li><ul><li><span class="rsc-ok">ping (ocf::pacemaker:ping): Started</span></li></ul></li>
</ul>

By default, a stylesheet for styling these classes is included in the head of the HTML output. The relevant
portions of this stylesheet that would be used in the above example is:

<style>
.online { color: green }
.rsc-ok { color: green }
</style>

If you want to override some or all of the styling, simply create your own stylesheet, place it on a web server,
and pass --html-stylesheet=<URL> to crm_mon. The link is added after the default stylesheet, so your
changes take precedence. You don’t need to duplicate the entire default. Only include what you want to
change.

2.5. Using Pacemaker Command-Line Tools 17



Pacemaker Administration, Release 2.1.7

2.5.3 Edit the CIB XML with cibadmin

The most flexible tool for modifying the configuration is Pacemaker’s cibadmin command. With cibadmin,
you can query, add, remove, update or replace any part of the configuration. All changes take effect imme-
diately, so there is no need to perform a reload-like operation.

The simplest way of using cibadmin is to use it to save the current configuration to a temporary file, edit
that file with your favorite text or XML editor, and then upload the revised configuration.

Safely using an editor to modify the cluster configuration

# cibadmin --query > tmp.xml
# vi tmp.xml
# cibadmin --replace --xml-file tmp.xml

Some of the better XML editors can make use of a RELAX NG schema to help make sure any changes you
make are valid. The schema describing the configuration can be found in pacemaker.rng, which may be
deployed in a location such as /usr/share/pacemaker depending on your operating system distribution and
how you installed the software.

If you want to modify just one section of the configuration, you can query and replace just that section to
avoid modifying any others.

Safely using an editor to modify only the resources section

# cibadmin --query --scope resources > tmp.xml
# vi tmp.xml
# cibadmin --replace --scope resources --xml-file tmp.xml

To quickly delete a part of the configuration, identify the object you wish to delete by XML tag and id. For
example, you might search the CIB for all STONITH-related configuration:

Searching for STONITH-related configuration items

# cibadmin --query | grep stonith
<nvpair id="cib-bootstrap-options-stonith-action" name="stonith-action" value="reboot"/>
<nvpair id="cib-bootstrap-options-stonith-enabled" name="stonith-enabled" value="1"/>
<primitive id="child_DoFencing" class="stonith" type="external/vmware">
<lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:1" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:2" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:0" type="external/vmware" class="stonith">
<lrm_resource id="child_DoFencing:3" type="external/vmware" class="stonith">

If you wanted to delete the primitive tag with id child_DoFencing, you would run:

# cibadmin --delete --xml-text '<primitive id="child_DoFencing"/>'

See the cibadmin man page for more options.

18 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Warning: Never edit the live cib.xml file directly. Pacemaker will detect such changes and refuse to
use the configuration.

2.5.4 Batch Configuration Changes with crm_shadow

Often, it is desirable to preview the effects of a series of configuration changes before updating the live
configuration all at once. For this purpose, crm_shadow creates a “shadow” copy of the configuration and
arranges for all the command-line tools to use it.

To begin, simply invoke crm_shadow --create with a name of your choice, and follow the simple on-screen
instructions. Shadow copies are identified with a name to make it possible to have more than one.

Warning: Read this section and the on-screen instructions carefully; failure to do so could result in
destroying the cluster’s active configuration!

Creating and displaying the active sandbox

# crm_shadow --create test
Setting up shadow instance
Type Ctrl-D to exit the crm_shadow shell
shadow[test]:
shadow[test] # crm_shadow --which
test

From this point on, all cluster commands will automatically use the shadow copy instead of talking to the
cluster’s active configuration. Once you have finished experimenting, you can either make the changes active
via the --commit option, or discard them using the --delete option. Again, be sure to follow the on-screen
instructions carefully!

For a full list of crm_shadow options and commands, invoke it with the --help option.

Use sandbox to make multiple changes all at once, discard them, and verify real configuration
is untouched

2.5. Using Pacemaker Command-Line Tools 19



Pacemaker Administration, Release 2.1.7

shadow[test] # crm_failcount -r rsc_c001n01 -G
scope=status name=fail-count-rsc_c001n01 value=0
shadow[test] # crm_standby --node c001n02 -v on
shadow[test] # crm_standby --node c001n02 -G
scope=nodes name=standby value=on

shadow[test] # cibadmin --erase --force
shadow[test] # cibadmin --query
<cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="112" num_updates="2" admin_
↪→epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client=
↪→"crm_node" update-user="root" have-quorum="1" dc-uuid="1">
<configuration>
<crm_config/>
<nodes/>
<resources/>
<constraints/>

</configuration>
<status/>

</cib>
shadow[test] # crm_shadow --delete test --force
Now type Ctrl-D to exit the crm_shadow shell
shadow[test] # exit
# crm_shadow --which
No active shadow configuration defined
# cibadmin -Q
<cib crm_feature_set="3.0.14" validate-with="pacemaker-3.0" epoch="110" num_updates="2" admin_
↪→epoch="0" cib-last-written="Mon Jan 8 23:26:47 2018" update-origin="rhel7-1" update-client=
↪→"crm_node" update-user="root" have-quorum="1">

<configuration>
<crm_config>

<cluster_property_set id="cib-bootstrap-options">
<nvpair id="cib-bootstrap-1" name="stonith-enabled" value="1"/>
<nvpair id="cib-bootstrap-2" name="pe-input-series-max" value="30000"/>

See the next section, Simulate Cluster Activity with crm_simulate, for how to test your changes before
committing them to the live cluster.

2.5.5 Simulate Cluster Activity with crm_simulate

The command-line tool crm_simulate shows the results of the same logic the cluster itself uses to respond
to a particular cluster configuration and status.

As always, the man page is the primary documentation, and should be consulted for further details. This
section aims for a better conceptual explanation and practical examples.

Replaying cluster decision-making logic

At any given time, one node in a Pacemaker cluster will be elected DC, and that node will run Pacemaker’s
scheduler to make decisions.

Each time decisions need to be made (a “transition”), the DC will have log messages like “Calculated
transition … saving inputs in …” with a file name. You can grab the named file and replay the cluster logic
to see why particular decisions were made. The file contains the live cluster configuration at that moment,
so you can also look at it directly to see the value of node attributes, etc., at that time.

20 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

The simplest usage is (replacing $FILENAME with the actual file name):

Simulate cluster response to a given CIB

# crm_simulate --simulate --xml-file $FILENAME

That will show the cluster state when the process started, the actions that need to be taken (“Transition
Summary”), and the resulting cluster state if the actions succeed. Most actions will have a brief description
of why they were required.

The transition inputs may be compressed. crm_simulate can handle these compressed files directly, though
if you want to edit the file, you’ll need to uncompress it first.

You can do the same simulation for the live cluster configuration at the current moment. This is useful
mainly when using crm_shadow to create a sandbox version of the CIB; the --live-check option will use
the shadow CIB if one is in effect.

Simulate cluster response to current live CIB or shadow CIB

# crm_simulate --simulate --live-check

Why decisions were made

To get further insight into the “why”, it gets user-unfriendly very quickly. If you add the --show-scores
option, you will also see all the scores that went into the decision-making. The node with the highest
cumulative score for a resource will run it. You can look for -INFINITY scores in particular to see where
complete bans came into effect.

You can also add -VVVV to get more detailed messages about what’s happening under the hood. You can
add up to two more V’s even, but that’s usually useful only if you’re a masochist or tracing through the
source code.

Visualizing the action sequence

Another handy feature is the ability to generate a visual graph of the actions needed, using the
--save-dotfile option. This relies on the separate Graphviz1 project.

Generate a visual graph of cluster actions from a saved CIB

# crm_simulate --simulate --xml-file $FILENAME --save-dotfile $FILENAME.dot
# dot $FILENAME.dot -Tsvg > $FILENAME.svg

$FILENAME.dot will contain a GraphViz representation of the cluster’s response to your changes, including
all actions with their ordering dependencies.

$FILENAME.svg will be the same information in a standard graphical format that you can view in your
browser or other app of choice. You could, of course, use other dot options to generate other formats.

How to interpret the graphical output:
1 Graph visualization software. See http://www.graphviz.org/ for details.

2.5. Using Pacemaker Command-Line Tools 21

http://www.graphviz.org/


Pacemaker Administration, Release 2.1.7

• Bubbles indicate actions, and arrows indicate ordering dependencies

• Resource actions have text of the form <RESOURCE>_<ACTION>_<INTERVAL_IN_MS> <NODE> indicating
that the specified action will be executed for the specified resource on the specified node, once if interval
is 0 or at specified recurring interval otherwise

• Actions with black text will be sent to the executor (that is, the appropriate agent will be invoked)

• Actions with orange text are “pseudo” actions that the cluster uses internally for ordering but require
no real activity

• Actions with a solid green border are part of the transition (that is, the cluster will attempt to execute
them in the given order – though a transition can be interrupted by action failure or new events)

• Dashed arrows indicate dependencies that are not present in the transition graph

• Actions with a dashed border will not be executed. If the dashed border is blue, the cluster does not
feel the action needs to be executed. If the dashed border is red, the cluster would like to execute
the action but cannot. Any actions depending on an action with a dashed border will not be able to
execute.

• Loops should not happen, and should be reported as a bug if found.

Small Cluster Transition

In the above example, it appears that a new node, pcmk-2, has come online and that the cluster is checking
to make sure rsc1, rsc2 and rsc3 are not already running there (indicated by the rscN_monitor_0 entries).
Once it did that, and assuming the resources were not active there, it would have liked to stop rsc1 and
rsc2 on pcmk-1 and move them to pcmk-2. However, there appears to be some problem and the cluster
cannot or is not permitted to perform the stop actions which implies it also cannot perform the start actions.
For some reason, the cluster does not want to start rsc3 anywhere.

Complex Cluster Transition

22 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.5. Using Pacemaker Command-Line Tools 23



Pacemaker Administration, Release 2.1.7

What-if scenarios

You can make changes to the saved or shadow CIB and simulate it again, to see how Pacemaker would react
differently. You can edit the XML by hand, use command-line tools such as cibadmin with either a shadow
CIB or the CIB_file environment variable set to the filename, or use higher-level tool support (see the man
pages of the specific tool you’re using for how to perform actions on a saved CIB file rather than the live
CIB).

You can also inject node failures and/or action failures into the simulation; see the crm_simulate man page
for more details.

This capability is useful when using a shadow CIB to edit the configuration. Before committing the changes
to the live cluster with crm_shadow --commit, you can use crm_simulate to see how the cluster will react
to the changes.

2.5.6 Manage Node Attributes, Cluster Options and Defaults with crm_attribute and
attrd_updater

crm_attribute and attrd_updater are confusingly similar tools with subtle differences.

attrd_updater can query and update node attributes. crm_attribute can query and update not only node
attributes, but also cluster options, resource defaults, and operation defaults.

To understand the differences, it helps to understand the various types of node attribute.

Table 2: Types of Node Attributes
Type Recorded

in CIB?
Recorded in attribute
manager memory?

Survive full clus-
ter restart?

Manageable by
crm_attribute?

Manageable by at-
trd_updater?

per-
ma-
nent

yes no yes yes no

tran-
sient

yes yes no yes yes

pri-
vate

no yes no no yes

As you can see from the table above, crm_attribute can manage permanent and transient node attributes,
while attrd_updater can manage transient and private node attributes.

The difference between the two tools lies mainly in how they update node attributes: attrd_updater always
contacts the Pacemaker attribute manager directly, while crm_attribute will contact the attribute manager
only for transient node attributes, and will instead modify the CIB directly for permanent node attributes
(and for transient node attributes when unable to contact the attribute manager).

By contacting the attribute manager directly, attrd_updater can change an attribute’s “dampening”
(whether changes are immediately flushed to the CIB or after a specified amount of time, to minimize
disk writes for frequent changes), set private node attributes (which are never written to the CIB), and set
attributes for nodes that don’t yet exist.

By modifying the CIB directly, crm_attribute can set permanent node attributes (which are only in the
CIB and not managed by the attribute manager), and can be used with saved CIB files and shadow CIBs.

However a transient node attribute is set, it is synchronized between the CIB and the attribute manager, on
all nodes.

24 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.5.7 Other Commonly Used Tools

Other command-line tools include:

• crm_failcount: query or delete resource fail counts

• crm_node: manage cluster nodes

• crm_report: generate a detailed cluster report for bug submissions

• crm_resource: manage cluster resources

• crm_standby: manage standby status of nodes

• crm_verify: validate a CIB

• stonith_admin: manage fencing devices

See the manual pages for details.

2.6 Administrative Modes

Intrusive administration can be performed on a Pacemaker cluster without causing resource failures, recovery,
and fencing, by putting the cluster or a subset of it into an administrative mode.

Pacemaker supports several administrative modes:

• Maintenance mode for the entire cluster, specific nodes, or specific resources

• Unmanaged resources

• Disabled configuration items

• Standby mode for specific nodes

Rules may be used to automatically set any of these modes for specific times or other conditions.

2.6.1 Maintenance Mode

In maintenance mode, the cluster will not start or stop resources. Recurring monitors for affected resources
will be paused, except those specifying role as Stopped.

To put a specific resource into maintenance mode, set the resource’s maintenance meta-attribute to true.

To put all active resources on a specific node into maintenance mode, set the node’s maintenance node
attribute to true. When enabled, this overrides resource-specific maintenance mode.

Warning: Restarting Pacemaker on a node that is in single-node maintenance mode will likely lead
to undesirable effects. If maintenance is set as a transient attribute, it will be erased when Pacemaker
is stopped, which will immediately take the node out of maintenance mode and likely get it fenced. If
set as a permanent attribute, any resources active on the node will have their local history erased when
Pacemaker is restarted, so the cluster will no longer consider them running on the node and thus will
consider them managed again, allowing them to be started elsewhere.

To put all resources in the cluster into maintenance mode, set the maintenance-mode cluster option to true.
When enabled, this overrides node- or resource- specific maintenance mode.

Maintenance mode, at any level, overrides other administrative modes.

2.6. Administrative Modes 25



Pacemaker Administration, Release 2.1.7

2.6.2 Unmanaged Resources

An unmanaged resource will not be started or stopped by the cluster. A resource may become unmanaged
in several ways:

• The administrator may set the is-managed resource meta-attribute to false (whether for a specific
resource, or all resources without an explicit setting via rsc_defaults)

• Maintenance mode causes affected resources to become unmanaged (and overrides any is-managed
setting)

• Certain types of failure cause affected resources to become unmanaged. These include:

– Failed stop operations when the stonith-enabled cluster property is set to false

– Failure of an operation that has on-fail set to block

– A resource detected as incorrectly active on more than one node when its multiple-active
meta-attribute is set to block

– A resource constrained by a revoked rsc_ticket with loss-policy set to freeze

– Resources with requires set (or defaulting) to anything other than nothing in a partition that
loses quorum when the no-quorum-policy cluster option is set to freeze

Recurring actions are not affected by unmanaging a resource.

Warning: Manually starting an unmanaged resource on a different node is strongly discouraged. It will
at least cause the cluster to consider the resource failed, and may require the resource’s target-role to
be set to Stopped then Started in order for recovery to succeed.

2.6.3 Disabled Configuration

Some configuration elements disable particular behaviors:

• The stonith-enabled cluster option, when set to false, disables node fencing. This is highly dis-
couraged, as it can lead to data unavailability, loss, or corruption.

• The stop-all-resources cluster option, when set to true, causes all resources to be stopped.

• Certain elements support an enabled meta-attribute, which if set to false, causes the cluster to act as
if the specific element is not configured. These include op, alert (since 2.1.6), and recipient (since
2.1.6). enabled may be set for specific op elements, or all operations without an explicit setting via
op_defaults.

2.6.4 Standby Mode

When a node is put into standby, all resources will be moved away from the node, and all recurring operations
will be stopped on the node, except those specifying role as Stopped (which will be newly initiated if
appropriate).

A node may be put into standby mode by setting its standby node attribute to true. The attribute may
be queried and set using the crm_standby tool.

26 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.6.5 Rules

Rules may be used to set administrative mode options automatically according to various criteria such as
date and time. See the “Rules” chapter of the Pacemaker Explained document for details.

2.7 Moving Resources

2.7.1 Moving Resources Manually

There are primarily two occasions when you would want to move a resource from its current location: when
the whole node is under maintenance, and when a single resource needs to be moved.

Standby Mode

Since everything eventually comes down to a score, you could create constraints for every resource to prevent
them from running on one node. While Pacemaker configuration can seem convoluted at times, not even we
would require this of administrators.

Instead, you can set a special node attribute which tells the cluster “don’t let anything run here”. There is
even a helpful tool to help query and set it, called crm_standby. To check the standby status of the current
machine, run:

# crm_standby -G

A value of on indicates that the node is not able to host any resources, while a value of off says that it can.

You can also check the status of other nodes in the cluster by specifying the –node option:

# crm_standby -G --node sles-2

To change the current node’s standby status, use -v instead of -G:

# crm_standby -v on

Again, you can change another host’s value by supplying a hostname with --node.

A cluster node in standby mode will not run resources, but still contributes to quorum, and may fence or be
fenced by nodes.

Moving One Resource

When only one resource is required to move, we could do this by creating location constraints. However,
once again we provide a user-friendly shortcut as part of the crm_resource command, which creates and
modifies the extra constraints for you. If Email were running on sles-1 and you wanted it moved to a
specific location, the command would look something like:

# crm_resource -M -r Email -H sles-2

Behind the scenes, the tool will create the following location constraint:

<rsc_location id="cli-prefer-Email" rsc="Email" node="sles-2" score="INFINITY"/>

It is important to note that subsequent invocations of crm_resource -M are not cumulative. So, if you ran
these commands:

2.7. Moving Resources 27



Pacemaker Administration, Release 2.1.7

# crm_resource -M -r Email -H sles-2
# crm_resource -M -r Email -H sles-3

then it is as if you had never performed the first command.

To allow the resource to move back again, use:

# crm_resource -U -r Email

Note the use of the word allow. The resource can move back to its original location, but depending on
resource-stickiness, location constraints, and so forth, it might stay where it is.

To be absolutely certain that it moves back to sles-1, move it there before issuing the call to crm_resource
-U:

# crm_resource -M -r Email -H sles-1
# crm_resource -U -r Email

Alternatively, if you only care that the resource should be moved from its current location, try:

# crm_resource -B -r Email

which will instead create a negative constraint, like:

<rsc_location id="cli-ban-Email-on-sles-1" rsc="Email" node="sles-1" score="-INFINITY"/>

This will achieve the desired effect, but will also have long-term consequences. As the tool will warn you, the
creation of a -INFINITY constraint will prevent the resource from running on that node until crm_resource
-U is used. This includes the situation where every other cluster node is no longer available!

In some cases, such as when resource-stickiness is set to INFINITY, it is possible that you will end up
with nodes with the same score, forcing the cluster to choose one (which may not be the one you want). The
tool can detect some of these cases and deals with them by creating both positive and negative constraints.
For example:

<rsc_location id="cli-ban-Email-on-sles-1" rsc="Email" node="sles-1" score="-INFINITY"/>
<rsc_location id="cli-prefer-Email" rsc="Email" node="sles-2" score="INFINITY"/>

which has the same long-term consequences as discussed earlier.

2.7.2 Moving Resources Due to Connectivity Changes

You can configure the cluster to move resources when external connectivity is lost in two steps.

Tell Pacemaker to Monitor Connectivity

First, add an ocf:pacemaker:ping resource to the cluster. The ping resource uses the system utility of the
same name to a test whether a list of machines (specified by DNS hostname or IP address) are reachable,
and uses the results to maintain a node attribute.

The node attribute is called pingd by default, but is customizable in order to allow multiple ping groups to
be defined.

Normally, the ping resource should run on all cluster nodes, which means that you’ll need to create a clone.
A template for this can be found below, along with a description of the most interesting parameters.

28 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Table 3: Commonly Used ocf:pacemaker:ping Resource Pa-
rameters

Resource Parame-
ter

Description

dampen
The time to wait (dampening) for further changes to occur. Use this to prevent
a resource from bouncing around the cluster when cluster nodes notice the loss of
connectivity at slightly different times.

multiplier
The number of connected ping nodes gets multiplied by this value to get a score.
Useful when there are multiple ping nodes configured.

host_list
The machines to contact in order to determine the current connectivity status.
Allowed values include resolvable DNS connectivity host names, IPv4 addresses,
and IPv6 addresses.

Example ping resource that checks node connectivity once every minute

<clone id="Connected">
<primitive id="ping" class="ocf" provider="pacemaker" type="ping">
<instance_attributes id="ping-attrs">
<nvpair id="ping-dampen" name="dampen" value="5s"/>
<nvpair id="ping-multiplier" name="multiplier" value="1000"/>
<nvpair id="ping-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>

</instance_attributes>
<operations>

<op id="ping-monitor-60s" interval="60s" name="monitor"/>
</operations>
</primitive>

</clone>

Important: You’re only half done. The next section deals with telling Pacemaker how to deal with the
connectivity status that ocf:pacemaker:ping is recording.

Tell Pacemaker How to Interpret the Connectivity Data

Important: Before attempting the following, make sure you understand rules. See the “Rules” chapter of
the Pacemaker Explained document for details.

There are a number of ways to use the connectivity data.

The most common setup is for people to have a single ping target (for example, the service network’s default
gateway), to prevent the cluster from running a resource on any unconnected node.

Don’t run a resource on unconnected nodes

<rsc_location id="WebServer-no-connectivity" rsc="Webserver">
<rule id="ping-exclude-rule" score="-INFINITY" >

<expression id="ping-exclude" attribute="pingd" operation="not_defined"/>
</rule>

</rsc_location>

2.7. Moving Resources 29



Pacemaker Administration, Release 2.1.7

A more complex setup is to have a number of ping targets configured. You can require the cluster to only
run resources on nodes that can connect to all (or a minimum subset) of them.

Run only on nodes connected to three or more ping targets

<primitive id="ping" provider="pacemaker" class="ocf" type="ping">
... <!-- omitting some configuration to highlight important parts -->

<nvpair id="ping-multiplier" name="multiplier" value="1000"/>
...
</primitive>
...
<rsc_location id="WebServer-connectivity" rsc="Webserver">

<rule id="ping-prefer-rule" score="-INFINITY" >
<expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>

</rule>
</rsc_location>

Alternatively, you can tell the cluster only to prefer nodes with the best connectivity, by using
score-attribute in the rule. Just be sure to set multiplier to a value higher than that of
resource-stickiness (and don’t set either of them to INFINITY).

Prefer node with most connected ping nodes

<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-prefer-rule" score-attribute="pingd" >

<expression id="ping-prefer" attribute="pingd" operation="defined"/>
</rule>

</rsc_location>

It is perhaps easier to think of this in terms of the simple constraints that the cluster translates it into. For
example, if sles-1 is connected to all five ping nodes but sles-2 is only connected to two, then it would
be as if you instead had the following constraints in your configuration:

How the cluster translates the above location constraint

<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
<rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>

The advantage is that you don’t have to manually update any constraints whenever your network connectivity
changes.

You can also combine the concepts above into something even more complex. The example below shows
how you can prefer the node with the most connected ping nodes provided they have connectivity to at least
three (again assuming that multiplier is set to 1000).

More complex example of choosing location based on connectivity

30 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-exclude-rule" score="-INFINITY" >

<expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>
</rule>
<rule id="ping-prefer-rule" score-attribute="pingd" >

<expression id="ping-prefer" attribute="pingd" operation="defined"/>
</rule>

</rsc_location>

2.8 Troubleshooting Cluster Problems

2.8.1 Logging

Pacemaker by default logs messages of notice severity and higher to the system log, and messages of info
severity and higher to the detail log, which by default is /var/log/pacemaker/pacemaker.log.

Logging options can be controlled via environment variables at Pacemaker start-up. Where these are set
varies by operating system (often /etc/sysconfig/pacemaker or /etc/default/pacemaker). See the com-
ments in that file for details.

Because cluster problems are often highly complex, involving multiple machines, cluster daemons, and man-
aged services, Pacemaker logs rather verbosely to provide as much context as possible. It is an ongoing
priority to make these logs more user-friendly, but by necessity there is a lot of obscure, low-level informa-
tion that can make them difficult to follow.

The default log rotation configuration shipped with Pacemaker (typically installed in /etc/logrotate.d/
pacemaker) rotates the log when it reaches 100MB in size, or weekly, whichever comes first.

If you configure debug or (Heaven forbid) trace-level logging, the logs can grow enormous quite quickly.
Because rotated logs are by default named with the year, month, and day only, this can cause name collisions
if your logs exceed 100MB in a single day. You can add dateformat -%Y%m%d-%H to the rotation configuration
to avoid this.

2.8.2 Reading the Logs

When troubleshooting, first check the system log or journal for errors or warnings from Pacemaker compo-
nents (conveniently, they will all have “pacemaker” in their logged process name). For example:

# grep 'pacemaker.*\(error\|warning\)' /var/log/messages
Mar 29 14:04:19 node1 pacemaker-controld[86636]: error: Result of monitor operation for rn2 on␣
↪→node1: Timed Out after 45s (Remote executor did not respond)

If that doesn’t give sufficient information, next look at the notice level messages from pacemaker-controld.
These will show changes in the state of cluster nodes. On the DC, this will also show resource actions
attempted. For example:

# grep 'pacemaker-controld.*notice:' /var/log/messages
... output skipped for brevity ...
Mar 29 14:05:36 node1 pacemaker-controld[86636]: notice: Node rn2 state is now lost
... more output skipped for brevity ...
Mar 29 14:12:17 node1 pacemaker-controld[86636]: notice: Initiating stop operation rsc1_stop_0 on␣
↪→node4
... more output skipped for brevity ...

2.8. Troubleshooting Cluster Problems 31



Pacemaker Administration, Release 2.1.7

Of course, you can use other tools besides grep to search the logs.

2.8.3 Transitions

A key concept in understanding how a Pacemaker cluster functions is a transition. A transition is a set of
actions that need to be taken to bring the cluster from its current state to the desired state (as expressed
by the configuration).

Whenever a relevant event happens (a node joining or leaving the cluster, a resource failing, etc.), the
controller will ask the scheduler to recalculate the status of the cluster, which generates a new transition.
The controller then performs the actions in the transition in the proper order.

Each transition can be identified in the DC’s logs by a line like:

notice: Calculated transition 19, saving inputs in /var/lib/pacemaker/pengine/pe-input-1463.bz2

The file listed as the “inputs” is a snapshot of the cluster configuration and state at that moment (the CIB).
This file can help determine why particular actions were scheduled. The crm_simulate command, described
in Simulate Cluster Activity with crm_simulate, can be used to replay the file.

The log messages immediately before the “saving inputs” message will include any actions that the scheduler
thinks need to be done.

2.8.4 Node Failures

When a node fails, and looking at errors and warnings doesn’t give an obvious explanation, try to answer
questions like the following based on log messages:

• When and what was the last successful message on the node itself, or about that node in the other
nodes’ logs?

• Did pacemaker-controld on the other nodes notice the node leave?

• Did pacemaker-controld on the DC invoke the scheduler and schedule a new transition?

• Did the transition include fencing the failed node?

• Was fencing attempted?

• Did fencing succeed?

2.8.5 Resource Failures

When a resource fails, and looking at errors and warnings doesn’t give an obvious explanation, try to answer
questions like the following based on log messages:

• Did pacemaker-controld record the result of the failed resource action?

• What was the failed action’s execution status and exit status?

• What code in the resource agent could result in those status codes?

• Did pacemaker-controld on the DC invoke the scheduler and schedule a new transition?

• Did the new transition include recovery of the resource?

• Were the recovery actions initiated, and what were their results?

32 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.9 Upgrading a Pacemaker Cluster

2.9.1 Pacemaker Versioning

Pacemaker has an overall release version, plus separate version numbers for certain internal components.

• Pacemaker release version: This version consists of three numbers (x.y.z).

The major version number (the x in x.y.z) increases when at least some rolling upgrades are not possible
from the previous major version. For example, a rolling upgrade from 1.0.8 to 1.1.15 should always be
supported, but a rolling upgrade from 1.0.8 to 2.0.0 may not be possible.

The minor version (the y in x.y.z) increases when there are significant changes in cluster default
behavior, tool behavior, and/or the API interface (for software that utilizes Pacemaker libraries). The
main benefit is to alert you to pay closer attention to the release notes, to see if you might be affected.

The release counter (the z in x.y.z) is increased with all public releases of Pacemaker, which typically
include both bug fixes and new features.

• CRM feature set: This version number applies to the communication between full cluster nodes,
and is used to avoid problems in mixed-version clusters.

The major version number increases when nodes with different versions would not work (rolling up-
grades are not allowed). The minor version number increases when mixed-version clusters are allowed
only during rolling upgrades. The minor-minor version number is ignored, but allows resource agents
to detect cluster support for various features.1

Pacemaker ensures that the longest-running node is the cluster’s DC. This ensures new features are
not enabled until all nodes are upgraded to support them.

• Pacemaker Remote protocol version: This version applies to communication between a Pacemaker
Remote node and the cluster. It increases when an older cluster node would have problems hosting the
connection to a newer Pacemaker Remote node. To avoid these problems, Pacemaker Remote nodes
will accept connections only from cluster nodes with the same or newer Pacemaker Remote protocol
version.

Unlike with CRM feature set differences between full cluster nodes, mixed Pacemaker Remote protocol
versions between Pacemaker Remote nodes and full cluster nodes are fine, as long as the Pacemaker
Remote nodes have the older version. This can be useful, for example, to host a legacy application in
an older operating system version used as a Pacemaker Remote node.

• XML schema version: Pacemaker’s configuration syntax — what’s allowed in the Configuration
Information Base (CIB) — has its own version. This allows the configuration syntax to evolve over
time while still allowing clusters with older configurations to work without change.

2.9.2 Upgrading Cluster Software

There are three approaches to upgrading a cluster, each with advantages and disadvantages.
1 Before CRM feature set 3.1.0 (Pacemaker 2.0.0), the minor-minor version number was treated the same as the minor

version.

2.9. Upgrading a Pacemaker Cluster 33



Pacemaker Administration, Release 2.1.7

Table 4: Upgrade Methods
Method Available

between all
versions

Can be used
with Pacemaker
Remote nodes

Service out-
age during
upgrade

Service re-
covery during
upgrade

Exercises
failover
logic

Allows change
of messaging
layer2

Complete
cluster
shutdown

yes yes always N/A no yes

Rolling
(node by
node)

no yes always3 yes yes no

Detach and
reattach

yes no only due to
failure

no no yes

Complete Cluster Shutdown

In this scenario, one shuts down all cluster nodes and resources, then upgrades all the nodes before restarting
the cluster.

1. On each node:

(a) Shutdown the cluster software (pacemaker and the messaging layer).

(b) Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or
the underlying operating system.

(c) Check the configuration with the crm_verify tool.

2. On each node:

(a) Start the cluster software.

Currently, only Corosync version 2 and greater is supported as the cluster layer, but if another stack is
supported in the future, the stack does not need to be the same one before the upgrade.

One variation of this approach is to build a new cluster on new hosts. This allows the new version to be
tested beforehand, and minimizes downtime by having the new nodes ready to be placed in production as
soon as the old nodes are shut down.

Rolling (node by node)

In this scenario, each node is removed from the cluster, upgraded, and then brought back online, until all
nodes are running the newest version.

Special considerations when planning a rolling upgrade:

• If you plan to upgrade other cluster software – such as the messaging layer – at the same time, consult
that software’s documentation for its compatibility with a rolling upgrade.

• If the major version number is changing in the Pacemaker version you are upgrading to, a rolling
upgrade may not be possible. Read the new version’s release notes (as well the information here) for
what limitations may exist.

2 Currently, Corosync version 2 and greater is the only supported cluster stack, but other stacks have been supported by
past versions, and may be supported by future versions.

3 Any active resources will be moved off the node being upgraded, so there will be at least a brief outage unless all resources
can be migrated “live”.

34 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

• If the CRM feature set is changing in the Pacemaker version you are upgrading to, you should run a
mixed-version cluster only during a small rolling upgrade window. If one of the older nodes drops out
of the cluster for any reason, it will not be able to rejoin until it is upgraded.

• If the Pacemaker Remote protocol version is changing, all cluster nodes should be upgraded before
upgrading any Pacemaker Remote nodes.

See the ClusterLabs wiki’s release calendar to figure out whether the CRM feature set and/or Pacemaker
Remote protocol version changed between the the Pacemaker release versions in your rolling upgrade.

To perform a rolling upgrade, on each node in turn:

1. Put the node into standby mode, and wait for any active resources to be moved cleanly to another
node. (This step is optional, but allows you to deal with any resource issues before the upgrade.)

2. Shutdown the cluster software (pacemaker and the messaging layer) on the node.

3. Upgrade the Pacemaker software. This may also include upgrading the messaging layer and/or the
underlying operating system.

4. If this is the first node to be upgraded, check the configuration with the crm_verify tool.

5. Start the messaging layer. This must be the same messaging layer (currently only Corosync version 2
and greater is supported) that the rest of the cluster is using.

Note: Even if a rolling upgrade from the current version of the cluster to the newest version is not directly
possible, it may be possible to perform a rolling upgrade in multiple steps, by upgrading to an intermediate
version first.

Table 5: Version Compatibility Table
Version being Installed Oldest Compatible Version
Pacemaker 2.y.z Pacemaker 1.1.114

Pacemaker 1.y.z Pacemaker 1.0.0
Pacemaker 0.7.z Pacemaker 0.6.z

Detach and Reattach

The reattach method is a variant of a complete cluster shutdown, where the resources are left active and get
re-detected when the cluster is restarted.

This method may not be used if the cluster contains any Pacemaker Remote nodes.

1. Tell the cluster to stop managing services. This is required to allow the services to remain active after
the cluster shuts down.

# crm_attribute --name maintenance-mode --update true

2. On each node, shutdown the cluster software (pacemaker and the messaging layer), and upgrade the
Pacemaker software. This may also include upgrading the messaging layer. While the underlying
operating system may be upgraded at the same time, that will be more likely to cause outages in the
detached services (certainly, if a reboot is required).

3. Check the configuration with the crm_verify tool.
4 Rolling upgrades from Pacemaker 1.1.z to 2.y.z are possible only if the cluster uses corosync version 2 or greater as its

messaging layer, and the Cluster Information Base (CIB) uses schema 1.0 or higher in its validate-with property.

2.9. Upgrading a Pacemaker Cluster 35

https://wiki.clusterlabs.org/wiki/ReleaseCalendar


Pacemaker Administration, Release 2.1.7

4. On each node, start the cluster software. Currently, only Corosync version 2 and greater is supported
as the cluster layer, but if another stack is supported in the future, the stack does not need to be the
same one before the upgrade.

5. Verify that the cluster re-detected all resources correctly.

6. Allow the cluster to resume managing resources again:

# crm_attribute --name maintenance-mode --delete

Note: While the goal of the detach-and-reattach method is to avoid disturbing running services, resources
may still move after the upgrade if any resource’s location is governed by a rule based on transient node
attributes. Transient node attributes are erased when the node leaves the cluster. A common example is
using the ocf:pacemaker:ping resource to set a node attribute used to locate other resources.

2.9.3 Upgrading the Configuration

The CIB schema version can change from one Pacemaker version to another.

After cluster software is upgraded, the cluster will continue to use the older schema version that it was
previously using. This can be useful, for example, when administrators have written tools that modify the
configuration, and are based on the older syntax.5

However, when using an older syntax, new features may be unavailable, and there is a performance impact,
since the cluster must do a non-persistent configuration upgrade before each transition. So while using the
old syntax is possible, it is not advisable to continue using it indefinitely.

Even if you wish to continue using the old syntax, it is a good idea to follow the upgrade procedure out-
lined below, except for the last step, to ensure that the new software has no problems with your existing
configuration (since it will perform much the same task internally).

If you are brave, it is sufficient simply to run cibadmin --upgrade.

A more cautious approach would proceed like this:

1. Create a shadow copy of the configuration. The later commands will automatically operate on this
copy, rather than the live configuration.

# crm_shadow --create shadow

1. Verify the configuration is valid with the new software (which may be stricter about syntax mistakes,
or may have dropped support for deprecated features):

# crm_verify --live-check

2. Fix any errors or warnings.

3. Perform the upgrade:

# cibadmin --upgrade

4. If this step fails, there are three main possibilities:

(a) The configuration was not valid to start with (did you do steps 2 and 3?).
5 As of Pacemaker 2.0.0, only schema versions pacemaker-1.0 and higher are supported (excluding pacemaker-1.1, which was

a special case).

36 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

(b) The transformation failed; report a bug.

(c) The transformation was successful but produced an invalid result.

If the result of the transformation is invalid, you may see a number of errors from the validation library.
If these are not helpful, visit the Validation FAQ wiki page and/or try the manual upgrade procedure
described below.

5. Check the changes:

# crm_shadow --diff

If at this point there is anything about the upgrade that you wish to fine-tune (for example, to change
some of the automatic IDs), now is the time to do so:

# crm_shadow --edit

This will open the configuration in your favorite editor (whichever is specified by the standard $EDITOR
environment variable).

6. Preview how the cluster will react:

# crm_simulate --live-check --save-dotfile shadow.dot -S
# dot -Tsvg shadow.dot -o shadow.svg

You can then view shadow.svg with any compatible image viewer or web browser. Verify that either no
resource actions will occur or that you are happy with any that are scheduled. If the output contains
actions you do not expect (possibly due to changes to the score calculations), you may need to make
further manual changes. See Simulate Cluster Activity with crm_simulate for further details on how
to interpret the output of crm_simulate and dot.

7. Upload the changes:

# crm_shadow --commit shadow --force

In the unlikely event this step fails, please report a bug.

Note: It is also possible to perform the configuration upgrade steps manually:

1. Locate the upgrade*.xsl conversion scripts provided with the source code. These will often be installed
in a location such as /usr/share/pacemaker, or may be obtained from the source repository.

2. Run the conversion scripts that apply to your older version, for example:

# xsltproc /path/to/upgrade06.xsl config06.xml > config10.xml

3. Locate the pacemaker.rng script (from the same location as the xsl files).

4. Check the XML validity:

# xmllint --relaxng /path/to/pacemaker.rng config10.xml

The advantage of this method is that it can be performed without the cluster running, and any validation
errors are often more informative.

2.9.4 What Changed in 2.1

The Pacemaker 2.1 release is fully backward-compatible in both the CIB XML and the C API. Highlights:

2.9. Upgrading a Pacemaker Cluster 37

https://bugs.clusterlabs.org/
https://wiki.clusterlabs.org/wiki/Validation_FAQ
https://github.com/ClusterLabs/pacemaker/tree/main/xml


Pacemaker Administration, Release 2.1.7

• Pacemaker now supports the OCF Resource Agent API version 1.1. Most notably, the Master
and Slave role names have been renamed to Promoted and Unpromoted.

• Pacemaker now supports colocations where the dependent resource does not affect the primary re-
source’s placement (via a new influence colocation constraint option and critical resource meta-
attribute). This is intended for cases where a less-important resource must be colocated with an
essential resource, but it is preferred to leave the less-important resource stopped if it fails, rather than
move both resources.

• If Pacemaker is built with libqb 2.0 or later, the detail log will use millisecond-resolution times-
tamps.

• In addition to crm_mon and stonith_admin, the crmadmin, crm_resource, crm_simulate, and
crm_verify commands now support the --output-as and --output-to options, including XML out-
put (which scripts and higher-level tools are strongly recommended to use instead of trying to parse
the text output, which may change from release to release).

For a detailed list of changes, see the release notes and the Pacemaker 2.1 Changes page on the ClusterLabs
wiki.

2.9.5 What Changed in 2.0

The main goal of the 2.0 release was to remove support for deprecated syntax, along with some small changes
in default configuration behavior and tool behavior. Highlights:

• Only Corosync version 2 and greater is now supported as the underlying cluster layer. Support for
Heartbeat and Corosync 1 (including CMAN) is removed.

• The Pacemaker detail log file is now stored in /var/log/pacemaker/pacemaker.log by default.

• The record-pending cluster property now defaults to true, which allows status tools such as crm_mon
to show operations that are in progress.

• Support for a number of deprecated build options, environment variables, and configuration settings
has been removed.

• The master tag has been deprecated in favor of using the clone tag with the new promotable meta-
attribute set to true. “Master/slave” clone resources are now referred to as “promotable” clone re-
sources.

• The public API for Pacemaker libraries that software applications can use has changed significantly.

For a detailed list of changes, see the release notes and the Pacemaker 2.0 Changes page on the ClusterLabs
wiki.

2.9.6 What Changed in 1.0

New

• Failure timeouts.

• New section for resource and operation defaults.

• Tool for making offline configuration changes.

• Rules, instance_attributes, meta_attributes and sets of operations can be defined once and ref-
erenced in multiple places.

• The CIB now accepts XPath-based create/modify/delete operations. See cibadmin --help.

38 Chapter 2. Table of Contents

https://wiki.clusterlabs.org/wiki/Pacemaker_2.1_Changes
https://wiki.clusterlabs.org/wiki/Pacemaker_2.0_Changes


Pacemaker Administration, Release 2.1.7

• Multi-dimensional colocation and ordering constraints.

• The ability to connect to the CIB from non-cluster machines.

• Allow recurring actions to be triggered at known times.

Changed

• Syntax

– All resource and cluster options now use dashes (-) instead of underscores (_)

– master_slave was renamed to master

– The attributes container tag was removed

– The operation field pre-req has been renamed requires

– All operations must have an interval, start/stop must have it set to zero

• The stonith-enabled option now defaults to true.

• The cluster will refuse to start resources if stonith-enabled is true (or unset) and no STONITH
resources have been defined

• The attributes of colocation and ordering constraints were renamed for clarity.

• resource-failure-stickiness has been replaced by migration-threshold.

• The parameters for command-line tools have been made consistent

• Switched to ‘RelaxNG’ schema validation and ‘libxml2’ parser

– id fields are now XML IDs which have the following limitations:

∗ id’s cannot contain colons (:)

∗ id’s cannot begin with a number

∗ id’s must be globally unique (not just unique for that tag)

– Some fields (such as those in constraints that refer to resources) are IDREFs.

This means that they must reference existing resources or objects in order for the configuration
to be valid. Removing an object which is referenced elsewhere will therefore fail.

– The CIB representation, from which a MD5 digest is calculated to verify CIBs on the nodes, has
changed.

This means that every CIB update will require a full refresh on any upgraded nodes until the
cluster is fully upgraded to 1.0. This will result in significant performance degradation and it is
therefore highly inadvisable to run a mixed 1.0/0.6 cluster for any longer than absolutely necessary.

• Ping node information no longer needs to be added to ha.cf. Simply include the lists of hosts in your
ping resource(s).

Removed

• Syntax

– It is no longer possible to set resource meta options as top-level attributes. Use meta-attributes
instead.

– Resource and operation defaults are no longer read from crm_config.

2.9. Upgrading a Pacemaker Cluster 39



Pacemaker Administration, Release 2.1.7

2.10 Alert Agents

2.10.1 Using the Sample Alert Agents

Pacemaker provides several sample alert agents, installed in /usr/share/pacemaker/alerts by default.

While these sample scripts may be copied and used as-is, they are provided mainly as templates to be edited
to suit your purposes. See their source code for the full set of instance attributes they support.

Sending cluster events as SNMP v2c traps

<configuration>
<alerts>

<alert id="snmp_alert" path="/path/to/alert_snmp.sh">
<instance_attributes id="config_for_alert_snmp">

<nvpair id="trap_node_states" name="trap_node_states"
value="all"/>

</instance_attributes>
<meta_attributes id="config_for_timestamp">

<nvpair id="ts_fmt" name="timestamp-format"
value="%Y-%m-%d,%H:%M:%S.%01N"/>

</meta_attributes>
<recipient id="snmp_destination" value="192.168.1.2"/>

</alert>
</alerts>

</configuration>

Note: SNMP alert agent attributes

The timestamp-format meta-attribute should always be set to %Y-%m-%d,%H:%M:%S.%01N when using the
SNMP agent, to match the SNMP standard.

The SNMP agent provides a number of instance attributes in addition to the one used in the example above.
The most useful are trap_version, which defaults to 2c, and trap_community, which defaults to public.
See the source code for more details.

Sending cluster events as SNMP v3 traps

<configuration>
<alerts>

<alert id="snmp_alert" path="/path/to/alert_snmp.sh">
<instance_attributes id="config_for_alert_snmp">

<nvpair id="trap_node_states" name="trap_node_states"
value="all"/>

<nvpair id="trap_version" name="trap_version" value="3"/>
<nvpair id="trap_community" name="trap_community" value=""/>
<nvpair id="trap_options" name="trap_options"

value="-l authNoPriv -a MD5 -u testuser -A secret1"/>
</instance_attributes>
<meta_attributes id="config_for_timestamp">

<nvpair id="ts_fmt" name="timestamp-format"
value="%Y-%m-%d,%H:%M:%S.%01N"/>

</meta_attributes>
<recipient id="snmp_destination" value="192.168.1.2"/>

</alert>
</alerts>

</configuration>40 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Note: SNMP v3 trap configuration

To use SNMP v3, trap_version must be set to 3. trap_community will be ignored.

The example above uses the trap_options instance attribute to override the security level, authentication
protocol, authentication user, and authentication password from snmp.conf. These will be passed to the
snmptrap command. Passing the password on the command line is considered insecure; specify authentication
and privacy options suitable for your environment.

Sending cluster events as e-mails

<configuration>
<alerts>

<alert id="smtp_alert" path="/path/to/alert_smtp.sh">
<instance_attributes id="config_for_alert_smtp">

<nvpair id="email_sender" name="email_sender"
value="donotreply@example.com"/>

</instance_attributes>
<recipient id="smtp_destination" value="admin@example.com"/>

</alert>
</alerts>

</configuration>

2.10.2 Writing an Alert Agent

Table 6: Environment variables passed to alert agents
Environment Variable Description
CRM_alert_kind The type of alert (node, fencing, resource, or attribute)
CRM_alert_node Name of affected node
CRM_alert_node_sequenceA sequence number increased whenever an alert is being issued on the local

node, which can be used to reference the order in which alerts have been issued
by Pacemaker. An alert for an event that happened later in time reliably has
a higher sequence number than alerts for earlier events.
Be aware that this number has no cluster-wide meaning.

CRM_alert_recipient The configured recipient
CRM_alert_timestamp A timestamp created prior to executing the agent, in the format specified

by the timestamp-format meta-attribute. This allows the agent to have a
reliable, high-precision time of when the event occurred, regardless of when
the agent itself was invoked (which could potentially be delayed due to system
load, etc.).

CRM_alert_timestamp_epochThe same time as CRM_alert_timestamp, expressed as the integer number of
seconds since January 1, 1970. This (along with CRM_alert_timestamp_usec)
can be useful for alert agents that need to format time in a specific way rather
than let the user configure it.

CRM_alert_timestamp_usecThe same time as CRM_alert_timestamp, expressed as the integer number of
microseconds since CRM_alert_timestamp_epoch.

CRM_alert_version The version of Pacemaker sending the alert
Continued on next page

2.10. Alert Agents 41



Pacemaker Administration, Release 2.1.7

Table 6 – continued from previous page
Environment Variable Description
CRM_alert_desc Detail about event. For node alerts, this is the node’s current state (member

or lost). For fencing alerts, this is a summary of the requested fencing
operation, including origin, target, and fencing operation error code, if any.
For resource alerts, this is a readable string equivalent of CRM_alert_status.

CRM_alert_nodeid ID of node whose status changed (provided with node alerts only)
CRM_alert_rc The numerical return code of the fencing or resource operation (provided with

fencing and resource alerts only)
CRM_alert_task The requested fencing or resource operation (provided with fencing and

resource alerts only)
CRM_alert_exec_time The (wall-clock) time, in milliseconds, that it took to execute the action. If

the action timed out, CRM_alert_status will be 2, CRM_alert_desc will be
“Timed Out”, and this value will be the action timeout. May not be supported
on all platforms. (resource alerts only) (since 2.0.1)

CRM_alert_interval The interval of the resource operation (resource alerts only)
CRM_alert_rsc The name of the affected resource (resource alerts only)
CRM_alert_status A numerical code used by Pacemaker to represent the operation result

(resource alerts only)
CRM_alert_target_rc The expected numerical return code of the operation (resource alerts only)
CRM_alert_attribute_nameThe name of the node attribute that changed (attribute alerts only)
CRM_alert_attribute_valueThe new value of the node attribute that changed (attribute alerts only)

Special concerns when writing alert agents:

• Alert agents may be called with no recipient (if none is configured), so the agent must be able to handle
this situation, even if it only exits in that case. (Users may modify the configuration in stages, and
add a recipient later.)

• If more than one recipient is configured for an alert, the alert agent will be called once per recipient.
If an agent is not able to run concurrently, it should be configured with only a single recipient. The
agent is free, however, to interpret the recipient as a list.

• When a cluster event occurs, all alerts are fired off at the same time as separate processes. Depending
on how many alerts and recipients are configured, and on what is done within the alert agents, a
significant load burst may occur. The agent could be written to take this into consideration, for
example by queueing resource-intensive actions into some other instance, instead of directly executing
them.

• Alert agents are run as the hacluster user, which has a minimal set of permissions. If an agent
requires additional privileges, it is recommended to configure sudo to allow the agent to run the
necessary commands as another user with the appropriate privileges.

• As always, take care to validate and sanitize user-configured parameters, such as CRM_alert_timestamp
(whose content is specified by the user-configured timestamp-format), CRM_alert_recipient, and
all instance attributes. Mostly this is needed simply to protect against configuration errors, but if
some user can modify the CIB without having hacluster access to the cluster nodes, it is a potential
security concern as well, to avoid the possibility of code injection.

Note: ocf:pacemaker:ClusterMon compatibility

The alerts interface is designed to be backward compatible with the external scripts interface used by the
ocf:pacemaker:ClusterMon resource, which is now deprecated. To preserve this compatibility, the envi-
ronment variables passed to alert agents are available prepended with CRM_notify_ as well as CRM_alert_.
One break in compatibility is that ClusterMon ran external scripts as the root user, while alert agents are

42 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

run as the hacluster user.

2.11 Resource Agents

2.11.1 Action Completion

If one resource depends on another resource via constraints, the cluster will interpret an expected result
as sufficient to continue with dependent actions. This may cause timing issues if the resource agent start
returns before the service is not only launched but fully ready to perform its function, or if the resource
agent stop returns before the service has fully released all its claims on system resources. At a minimum,
the start or stop should not return before a status command would return the expected (started or stopped)
result.

2.11.2 OCF Resource Agents

Location of Custom Scripts

OCF Resource Agents are found in /usr/lib/ocf/resource.d/$PROVIDER

When creating your own agents, you are encouraged to create a new directory under /usr/lib/ocf/
resource.d/ so that they are not confused with (or overwritten by) the agents shipped by existing providers.

So, for example, if you choose the provider name of big-corp and want a new resource named big-app, you
would create a resource agent called /usr/lib/ocf/resource.d/big-corp/big-app and define a resource:

Actions

All OCF resource agents are required to implement the following actions.

Table 7: Required Actions for OCF Agents
Ac-
tion

Description Instructions

start Start the
resource Return 0 on success and an appropriate error code otherwise. Must not report

success until the resource is fully active.
stop Stop the re-

source Return 0 on success and an appropriate error code otherwise. Must not report
success until the resource is fully stopped.

mon-
itor

Check the
resource’s
state

Exit 0 if the resource is running, 7 if it is stopped, and any other OCF exit code if
it is failed. NOTE: The monitor script should test the state of the resource on the
local machine only.

meta-
data

Describe
the re-
source

Provide information about this resource in the XML format defined by the OCF
standard. Exit with 0. NOTE: This is not required to be performed as root.

OCF resource agents may optionally implement additional actions. Some are used only with advanced
resource types such as clones.

2.11. Resource Agents 43



Pacemaker Administration, Release 2.1.7

Table 8: Optional Actions for OCF Resource Agents
Ac-
tion

Description Instructions

validate-
all

This should validate the instance parameters
provided. Return 0 if parameters are valid, 2 if not valid,

and 6 if resource is not configured.
pro-
mote

Bring the local instance of a promotable clone
resource to the promoted role. Return 0 on success

de-
mote

Bring the local instance of a promotable clone
resource to the unpromoted role. Return 0 on success

no-
tify

Used by the cluster to send the agent pre- and
post- notification events telling the resource
what has happened and will happen.

Must not fail. Must exit with 0

reload Reload the service’s own config. Not used by Pacemaker
reload-
agent

Make effective any changes in instance param-
eters marked as reloadable in the agent’s meta-
data.

This is used when the agent can handle a change
in some of its parameters more efficiently than
stopping and starting the resource.

re-
cover

Restart the service. Not used by Pacemaker

Important: If you create a new OCF resource agent, use ocf-tester to verify that the agent complies with
the OCF standard properly.

How are OCF Return Codes Interpreted?

The first thing the cluster does is to check the return code against the expected result. If the result does not
match the expected value, then the operation is considered to have failed, and recovery action is initiated.

There are three types of failure recovery:

Table 9: Types of recovery performed by the cluster
Type Description Action Taken by the Cluster
soft

A transient error occurred
Restart the resource or move it to a new
location

hard
A non-transient error that may be specific to the cur-
rent node

Move the resource elsewhere and prevent it
from being retried on the current node

fa-
tal A non-transient error that will be common to all clus-

ter nodes (e.g. a bad configuration was specified)

Stop the resource and prevent it from being
started on any cluster node

OCF Return Codes

The following table outlines the different OCF return codes and the type of recovery the cluster will initiate
when a failure code is received. Although counterintuitive, even actions that return 0 (aka. OCF_SUCCESS)
can be considered to have failed, if 0 was not the expected return value.

44 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Table 10: OCF Exit Codes and their Recovery Types
Exit
Code

OCF Alias Description Re-
cov-
ery

0 OCF_SUCCESS Success. The command completed successfully. This is the expected
result for all start, stop, promote and demote commands.

soft

1 OCF_ERR_GENERICGeneric “there was a problem” error code. soft

2 OCF_ERR_ARGS
The resource’s parameter values are not valid on this machine (for ex-
ample, a value refers to a file not found on the local host).

hard

3 OCF_ERR_UNIMPLEMENTEDThe requested action is not implemented. hard

4 OCF_ERR_PERMThe resource agent does not have sufficient privileges to complete the
task.

hard

5 OCF_ERR_INSTALLEDThe tools required by the resource are not installed on this machine. hard

6 OCF_ERR_CONFIGURED
The resource’s parameter values are inherently invalid (for example, a
required parameter was not given).

fa-
tal

7 OCF_NOT_RUNNINGThe resource is safely stopped. This should only be returned by monitor
actions, not stop actions.

N/A

8 OCF_RUNNING_PROMOTEDThe resource is running in the promoted role. soft

9 OCF_FAILED_PROMOTED
The resource is (or might be) in the promoted role but has failed. The
resource will be demoted, stopped and then started (and possibly pro-
moted) again.

soft

190 OCF_DEGRADEDThe resource is properly active, but in such a condition that future
failures are more likely.

none

191 OCF_DEGRADED_PROMOTEDThe resource is properly active in the promoted role, but in such a
condition that future failures are more likely.

none

other none Custom error code. soft

Exceptions to the recovery handling described above:

• Probes (non-recurring monitor actions) that find a resource active (or in the promoted role) will not
result in recovery action unless it is also found active elsewhere.

• The recovery action taken when a resource is found active more than once is determined by the
resource’s multiple-active property.

• Recurring actions that return OCF_ERR_UNIMPLEMENTED do not cause any type of recovery.

• Actions that return one of the “degraded” codes will be treated the same as if they had returned
success, but status output will indicate that the resource is degraded.

2.11.3 LSB Resource Agents (Init Scripts)

LSB Compliance

The relevant part of the LSB specifications includes a description of all the return codes listed here.

2.11. Resource Agents 45

http://refspecs.linuxfoundation.org/lsb.shtml


Pacemaker Administration, Release 2.1.7

Assuming some_service is configured correctly and currently inactive, the following sequence will help you
determine if it is LSB-compatible:

1. Start (stopped):

# /etc/init.d/some_service start ; echo "result: $?"

• Did the service start?

• Did the echo command print result: 0 (in addition to the init script’s usual output)?

2. Status (running):

# /etc/init.d/some_service status ; echo "result: $?"

• Did the script accept the command?

• Did the script indicate the service was running?

• Did the echo command print result: 0 (in addition to the init script’s usual output)?

3. Start (running):

# /etc/init.d/some_service start ; echo "result: $?"

• Is the service still running?

• Did the echo command print result: 0 (in addition to the init script’s usual output)?

4. Stop (running):

# /etc/init.d/some_service stop ; echo "result: $?"

• Was the service stopped?

• Did the echo command print result: 0 (in addition to the init script’s usual output)?

5. Status (stopped):

# /etc/init.d/some_service status ; echo "result: $?"

• Did the script accept the command?

• Did the script indicate the service was not running?

• Did the echo command print result: 3 (in addition to the init script’s usual output)?

6. Stop (stopped):

# /etc/init.d/some_service stop ; echo "result: $?"

• Is the service still stopped?

• Did the echo command print result: 0 (in addition to the init script’s usual output)?

7. Status (failed):

This step is not readily testable and relies on manual inspection of the script.

The script can use one of the error codes (other than 3) listed in the LSB spec to indicate that it is
active but failed. This tells the cluster that before moving the resource to another node, it needs to
stop it on the existing one first.

If the answer to any of the above questions is no, then the script is not LSB-compliant. Your options are
then to either fix the script or write an OCF agent based on the existing script.

46 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.12 Quick Comparison of pcs and crm shell

pcs and crm shell are two popular higher-level command-line interfaces to Pacemaker. Each has its own
syntax; this chapter gives a quick comparion of how to accomplish the same tasks using either one. Some
examples also show the equivalent command using low-level Pacmaker command-line tools.

These examples show the simplest syntax; see the respective man pages for all possible options.

2.12.1 Show Cluster Configuration and Status

Show Configuration (Raw XML)

crmsh # crm configure show xml
pcs # pcs cluster cib
pacemaker # cibadmin -Q

Show Configuration (Human-friendly)

crmsh # crm configure show
pcs # pcs config

Show Cluster Status

crmsh # crm status
pcs # pcs status
pacemaker # crm_mon -1

2.12.2 Manage Nodes

Put node “pcmk-1” in standby mode

crmsh # crm node standby pcmk-1
pcs-0.9 # pcs cluster standby pcmk-1
pcs-0.10 # pcs node standby pcmk-1
pacemaker # crm_standby -N pcmk-1 -v on

Remove node “pcmk-1” from standby mode

crmsh # crm node online pcmk-1
pcs-0.9 # pcs cluster unstandby pcmk-1
pcs-0.10 # pcs node unstandby pcmk-1
pacemaker # crm_standby -N pcmk-1 -v off

2.12. Quick Comparison of pcs and crm shell 47



Pacemaker Administration, Release 2.1.7

2.12.3 Manage Cluster Properties

Set the “stonith-enabled” cluster property to “false”

crmsh # crm configure property stonith-enabled=false
pcs # pcs property set stonith-enabled=false
pacemaker # crm_attribute -n stonith-enabled -v false

2.12.4 Show Resource Agent Information

List Resource Agent (RA) Classes

crmsh # crm ra classes
pcs # pcs resource standards
pacmaker # crm_resource --list-standards

List Available Resource Agents (RAs) by Standard

crmsh # crm ra list ocf
pcs # pcs resource agents ocf
pacemaker # crm_resource --list-agents ocf

List Available Resource Agents (RAs) by OCF Provider

crmsh # crm ra list ocf pacemaker
pcs # pcs resource agents ocf:pacemaker
pacemaker # crm_resource --list-agents ocf:pacemaker

List Available Resource Agent Parameters

crmsh # crm ra info IPaddr2
pcs # pcs resource describe IPaddr2
pacemaker # crm_resource --show-metadata ocf:heartbeat:IPaddr2

You can also use the full class:provider:type format with crmsh and pcs if multiple RAs with the same
name are available.

Show Available Fence Agent Parameters

crmsh # crm ra info stonith:fence_ipmilan
pcs # pcs stonith describe fence_ipmilan

48 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

2.12.5 Manage Resources

Create a Resource

Both crmsh and pcs determine the standard and provider (ocf:heartbeat) automatically since IPaddr2 is
unique, and automatically create operations (including monitor) based on the agent’s meta-data.

Show Configuration of All Resources

crmsh # crm configure show
pcs-0.9 # pcs resource show --full
pcs-0.10 # pcs resource config

Show Configuration of One Resource

crmsh # crm configure show ClusterIP
pcs-0.9 # pcs resource show ClusterIP
pcs-0.10 # pcs resource config ClusterIP

Show Configuration of Fencing Resources

crmsh # crm resource status
pcs-0.9 # pcs stonith show --full
pcs-0.10 # pcs stonith config

Start a Resource

crmsh # crm resource start ClusterIP
pcs # pcs resource enable ClusterIP
pacemaker # crm_resource -r ClusterIP --set-parameter target-role --meta -v Started

Stop a Resource

crmsh # crm resource stop ClusterIP
pcs # pcs resource disable ClusterIP
pacemaker # crm_resource -r ClusterIP --set-parameter target-role --meta -v Stopped

Remove a Resource

crmsh # crm configure delete ClusterIP
pcs # pcs resource delete ClusterIP

2.12. Quick Comparison of pcs and crm shell 49



Pacemaker Administration, Release 2.1.7

Modify a Resource’s Instance Parameters

crmsh # crm resource param ClusterIP set clusterip_hash=sourceip
pcs # pcs resource update ClusterIP clusterip_hash=sourceip
pacemaker # crm_resource -r ClusterIP --set-parameter clusterip_hash -v sourceip

crmsh also has an edit command which edits the simplified CIB syntax (same commands as the command
line) via a configurable text editor.

Modify a Resource’s Instance Parameters Interactively

crmsh # crm configure edit ClusterIP

Using the interactive shell mode of crmsh, multiple changes can be edited and verified before committing to
the live configuration:

Make Multiple Configuration Changes Interactively

crmsh # crm configure
crmsh # edit
crmsh # verify
crmsh # commit

Delete a Resource’s Instance Parameters

crmsh # crm resource param ClusterIP delete nic
pcs # pcs resource update ClusterIP nic=
pacemaker # crm_resource -r ClusterIP --delete-parameter nic

List Current Resource Defaults

crmsh # crm configure show type:rsc_defaults
pcs # pcs resource defaults
pacemaker # cibadmin -Q --scope rsc_defaults

Set Resource Defaults

crmsh # crm configure rsc_defaults resource-stickiness=100
pcs # pcs resource defaults resource-stickiness=100

List Current Operation Defaults

crmsh # crm configure show type:op_defaults
pcs # pcs resource op defaults
pacemaker # cibadmin -Q --scope op_defaults

50 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Set Operation Defaults

crmsh # crm configure op_defaults timeout=240s
pcs # pcs resource op defaults timeout=240s

Enable Resource Agent Tracing for a Resource

crmsh # crm resource trace Website

Clear Fail Counts for a Resource

crmsh # crm resource cleanup Website
pcs # pcs resource cleanup Website
pacemaker # crm_resource --cleanup -r Website

Create a Clone Resource

crmsh # crm configure clone WebIP ClusterIP meta globally-unique=true clone-max=2 clone-node-
↪→max=2
pcs # pcs resource clone ClusterIP globally-unique=true clone-max=2 clone-node-max=2

Create a Promotable Clone Resource

crmsh # crm configure ms WebDataClone WebData \
meta master-max=1 master-node-max=1 \
clone-max=2 clone-node-max=1 notify=true

crmsh # crm configure clone WebDataClone WebData \
meta promotable=true \
promoted-max=1 promoted-node-max=1 \
clone-max=2 clone-node-max=1 notify=true

pcs-0.9 # pcs resource master WebDataClone WebData \
master-max=1 master-node-max=1 \
clone-max=2 clone-node-max=1 notify=true

pcs-0.10 # pcs resource promotable WebData WebDataClone \
promoted-max=1 promoted-node-max=1 \
clone-max=2 clone-node-max=1 notify=true

crmsh supports both ways (‘configure ms’ is deprecated) to configure promotable clone since crmsh 4.4.0.
pcs will generate the clone name automatically if it is omitted from the command line.

2.12.6 Manage Constraints

2.12. Quick Comparison of pcs and crm shell 51



Pacemaker Administration, Release 2.1.7

Create a Colocation Constraint

crmsh # crm configure colocation website-with-ip INFINITY: WebSite ClusterIP
pcs # pcs constraint colocation add ClusterIP with WebSite INFINITY

Create a Colocation Constraint Based on Role

crmsh # crm configure colocation another-ip-with-website inf: AnotherIP WebSite:Master
pcs # pcs constraint colocation add Started AnotherIP with Promoted WebSite INFINITY

Create an Ordering Constraint

crmsh # crm configure order apache-after-ip mandatory: ClusterIP WebSite
pcs # pcs constraint order ClusterIP then WebSite

Create an Ordering Constraint Based on Role

crmsh # crm configure order ip-after-website Mandatory: WebSite:Master AnotherIP
pcs # pcs constraint order promote WebSite then start AnotherIP

Create a Location Constraint

crmsh # crm configure location prefer-pcmk-1 WebSite 50: pcmk-1
pcs # pcs constraint location WebSite prefers pcmk-1=50

Create a Location Constraint Based on Role

crmsh # crm configure location prefer-pcmk-1 WebSite rule role=Master 50: \#uname eq pcmk-1
pcs # pcs constraint location WebSite rule role=Promoted 50 \#uname eq pcmk-1

Move a Resource to a Specific Node (by Creating a Location Constraint)

crmsh # crm resource move WebSite pcmk-1
pcs # pcs resource move WebSite pcmk-1
pacemaker # crm_resource -r WebSite --move -N pcmk-1

Move a Resource Away from Its Current Node (by Creating a Location Constraint)

crmsh # crm resource ban Website pcmk-2
pcs # pcs resource ban Website pcmk-2
pacemaker # crm_resource -r WebSite --move

52 Chapter 2. Table of Contents



Pacemaker Administration, Release 2.1.7

Remove any Constraints Created by Moving a Resource

crmsh # crm resource unmove WebSite
pcs # pcs resource clear WebSite
pacemaker # crm_resource -r WebSite --clear

2.12.7 Advanced Configuration

Manipulate Configuration Elements by Type

List Constraints with IDs

pcs # pcs constraint list --full

Remove Constraint by ID

pcs # pcs constraint remove cli-ban-Website-on-pcmk-1
crmsh # crm configure remove cli-ban-Website-on-pcmk-1

crmsh’s show and edit commands can be used to manage resources and constraints by type:

Show Configuration Elements

crmsh # crm configure show type:primitive
crmsh # crm configure edit type:colocation

Batch Changes

Make Multiple Changes and Apply Together

crmsh # crm
crmsh # cib new drbd_cfg
crmsh # configure primitive WebData ocf:linbit:drbd params drbd_resource=wwwdata \

op monitor interval=60s
crmsh # configure ms WebDataClone WebData meta master-max=1 master-node-max=1 \

clone-max=2 clone-node-max=1 notify=true
crmsh # cib commit drbd_cfg
crmsh # quit

pcs # pcs cluster cib drbd_cfg
pcs # pcs -f drbd_cfg resource create WebData ocf:linbit:drbd drbd_resource=wwwdata \

op monitor interval=60s
pcs-0.9 # pcs -f drbd_cfg resource master WebDataClone WebData \

master-max=1 master-node-max=1 clone-max=2 clone-node-max=1 notify=true
pcs-0.10 # pcs -f drbd_cfg resource promotable WebData WebDataClone \

promoted-max=1 promoted-node-max=1 clone-max=2 clone-node-max=1 notify=true
pcs # pcs cluster cib-push drbd_cfg

2.12. Quick Comparison of pcs and crm shell 53



Pacemaker Administration, Release 2.1.7

Template Creation

Create Resource Template Based on Existing Primitives of Same Type

crmsh # crm configure assist template ClusterIP AdminIP

Log Analysis

Show Information About Recent Cluster Events

crmsh # crm history
crmsh # peinputs
crmsh # transition pe-input-10
crmsh # transition log pe-input-10

Configuration Scripts

Script Multiple-step Cluster Configurations

crmsh # crm script show apache
crmsh # crm script run apache \

id=WebSite \
install=true \
virtual-ip:ip=192.168.0.15 \
database:id=WebData \
database:install=true

54 Chapter 2. Table of Contents



CHAPTER

THREE

INDEX

• genindex

• search

55



Pacemaker Administration, Release 2.1.7

56 Chapter 3. Index



INDEX

Numbers
0

OCF return code, 45
1

OCF return code, 45
2

OCF return code, 45
3

OCF return code, 45
4

OCF return code, 45
5

OCF return code, 45
6

OCF return code, 45
7

OCF return code, 45
8

OCF return code, 45
9

OCF return code, 45
190

OCF return code, 45
191

OCF return code, 45

A
administrative mode, 25

disabled configuration, 26
maintenance mode, 25
rules, 26
standby, 26
unmanaged resources, 25

alert
agent development, 41
agents, 39
environment variables, 41
sample agents, 40

attrd_updater, 24

C
CIB, 12

properties, 13
upgrade, 36

CIB property, 13
CIB_encrypted, 15
CIB_passwd, 15
CIB_port, 15
CIB_server, 15
CIB_user, 15
cibadmin, 17
cluster layer, 12

Corosync, 12
command-line tool, 15

attrd_updater, 24
cibadmin, 17
crm_attribute, 24
crm_failcount, 24
crm_mon, 16
crm_node, 24
crm_report, 24
crm_shadow, 19
crm_simulate, 20
crm_standby, 24
crm_verify, 24
output format, 16
stonith_admin, 24

configuration, 12
CIB properties, 13
cluster options, 14
remote, 15
verify, 36

Corosync, 12
CRM_alert_attribute_name, 42
CRM_alert_attribute_value, 42
CRM_alert_desc, 42
CRM_alert_exec_time, 42
CRM_alert_interval, 42
CRM_alert_kind, 41
CRM_alert_node, 41
CRM_alert_nodeid, 42
CRM_alert_rc, 42
CRM_alert_recipient, 41
CRM_alert_rsc, 42

57



Pacemaker Administration, Release 2.1.7

CRM_alert_sequence, 41
CRM_alert_status, 42
CRM_alert_target_rc, 42
CRM_alert_task, 42
CRM_alert_timestamp, 41
CRM_alert_timestamp_epoch, 41
CRM_alert_timestamp_usec, 41
CRM_alert_version, 41
crm_attribute, 24
crm_failcount, 24
crm_mon, 16

CSS, 17
crm_node, 24
crm_report, 24
crm_shadow, 19
crm_simulate, 20
crm_standby, 24
crm_verify, 24
CSS

crm_mon, 17

D
dampen

ocf:pacemaker:ping resource parameter, 29
demote action, 44
disabled configuration

administrative mode, 26

E
environment variable

alert agents, 41
CIB_encrypted, 15
CIB_passwd, 15
CIB_port, 15
CIB_server, 15
CIB_user, 15
CRM_alert_attribute_name, 42
CRM_alert_attribute_value, 42
CRM_alert_desc, 42
CRM_alert_exec_time, 42
CRM_alert_interval, 42
CRM_alert_kind, 41
CRM_alert_node, 41
CRM_alert_nodeid, 42
CRM_alert_rc, 42
CRM_alert_recipient, 41
CRM_alert_rsc, 42
CRM_alert_sequence, 41
CRM_alert_status, 42
CRM_alert_target_rc, 42
CRM_alert_task, 42
CRM_alert_timestamp, 41
CRM_alert_timestamp_epoch, 41
CRM_alert_timestamp_usec, 41

CRM_alert_version, 41

F
feature set, 33

H
host_list

ocf:pacemaker:ping resource parameter, 29

I
init script, 45
installation, 12

L
logging, 31
LSB resource agent, 45

M
maintenance mode

administrative mode, 25
meta-data action, 43
monitor action, 43
multiplier

ocf:pacemaker:ping resource parameter, 29

N
node

standby mode, 27
notify action, 44

O
OCF resource agent, 43

action, 43
demote, 44
fatal error, 44
hard error, 44
location, 43
meta-data, 43
monitor, 43
notify, 44
promote, 44
recover, 44
reload, 44
reload-agent, 44
return code, 44
soft error, 44
start, 43
stop, 43
validate-all, 44

OCF return code
0, 45
1, 45
2, 45

58 Index



Pacemaker Administration, Release 2.1.7

3, 45
4, 45
5, 45
6, 45
7, 45
8, 45
9, 45
190, 45
191, 45
OCF_DEGRADED, 45
OCF_DEGRADED_PROMOTED, 45
OCF_ERR_ARGS, 45
OCF_ERR_CONFIGURED, 45
OCF_ERR_GENERIC, 45
OCF_ERR_INSTALLED, 45
OCF_ERR_PERM, 45
OCF_ERR_UNIMPLEMENTED, 45
OCF_FAILED_PROMOTED, 45
OCF_NOT_RUNNING, 45
OCF_RUNNING_PROMOTED, 45
OCF_SUCCESS, 45

ocf:pacemaker:ping resource, 28
dampen parameter, 29
host_list parameter, 29
multiplier parameter, 29

OCF_DEGRADED, 45
OCF_DEGRADED_PROMOTED, 45
OCF_ERR_ARGS, 45
OCF_ERR_CONFIGURED, 45
OCF_ERR_GENERIC, 45
OCF_ERR_INSTALLED, 45
OCF_ERR_PERM, 45
OCF_ERR_UNIMPLEMENTED, 45
OCF_FAILED_PROMOTED, 45
OCF_NOT_RUNNING, 45
OCF_RUNNING_PROMOTED, 45
OCF_SUCCESS, 45

P
pacemaker.log, 31
ping resource, 28
promote action, 44

R
recover action, 44
reload action, 44
reload-agent action, 44
resource

move, 27
resource agent, 43

LSB, 45
OCF, 43

rules
administrative mode, 26

S
standby

administrative mode, 26
standby mode, 27
start action, 43
stonith_admin, 24
stop action, 43

T
transition, 32
troubleshooting, 31

U
unmanaged resources

administrative mode, 25
upgrade, 32

CIB, 36
detach and reattach, 35
methods, 33
rolling upgrade, 34
shutdown, 34

V
validate-all action, 44
version, 33

feature set, 33
Pacemaker Remote protocol, 33
release, 33
XML schema, 33

Index 59


	Abstract
	Table of Contents
	Introduction
	The Scope of this Document
	What Is Pacemaker?

	Installing Cluster Software
	The Cluster Layer
	Configuring Pacemaker
	Configuration Using Higher-level Tools
	Configuration Using Pacemaker’s Command-Line Tools
	Connecting from a Remote Machine

	Using Pacemaker Command-Line Tools
	Controlling Command Line Output
	Monitor a Cluster with crm_mon
	Edit the CIB XML with cibadmin
	Batch Configuration Changes with crm_shadow
	Simulate Cluster Activity with crm_simulate
	Manage Node Attributes, Cluster Options and Defaults with crm_attribute and attrd_updater
	Other Commonly Used Tools

	Administrative Modes
	Maintenance Mode
	Unmanaged Resources
	Disabled Configuration
	Standby Mode
	Rules

	Moving Resources
	Moving Resources Manually
	Moving Resources Due to Connectivity Changes

	Troubleshooting Cluster Problems
	Logging
	Reading the Logs
	Transitions
	Node Failures
	Resource Failures

	Upgrading a Pacemaker Cluster
	Pacemaker Versioning
	Upgrading Cluster Software
	Upgrading the Configuration
	What Changed in 2.1
	What Changed in 2.0
	What Changed in 1.0

	Alert Agents
	Using the Sample Alert Agents
	Writing an Alert Agent

	Resource Agents
	Action Completion
	OCF Resource Agents
	LSB Resource Agents (Init Scripts)

	Quick Comparison of pcs and crm shell
	Show Cluster Configuration and Status
	Manage Nodes
	Manage Cluster Properties
	Show Resource Agent Information
	Manage Resources
	Manage Constraints
	Advanced Configuration


	Index
	Index

